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Water droplets in turbulent rain clouds
Forces on small droplet
Gravity (Newton’s second law):

                           density of water droplet
                           gravitational acceleration
                           particle size
Friction (Stokes’ law):

where
                                    (          )
                            viscosity
                            velocity of turbulent air in cloud
                            droplet position
                            droplet velocity
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stationary incompressible random velocity field
no preferred direction or position in either space or time
single scale flow with typical length scale    , time scale    and speed 

Model

Particle equation of motion

Spherical droplets move independently

particle position

γ damping rate (depends on droplet size and mass)

u(r, t)

η τ

Question: How do particles cluster within this model?

v particle velocity
gravitational acceleration (or a mean flow)

ṙ = v

v̇ = γ(u(r, t) − v) + g

r

g

⟨u(x1, t1)u(x2, t2)⟩ ∼ u
2
0e

−|t1−t2|/τ−(x1−x2)
2/(2η2)

⟨u(x1, t)⟩ = 0

u0



Kubo number
Stokes number
Dimensionless gravity

        flow speed
        correlation length of flow
        damping rate
        correlation time of flow

gravitational acceleration

u0

η

τ

Dimensionless parameters:

�

Model parameters

g

Ku = u0τ/η
St = 1/(γτ)}

Ku ∼ 1

In rain cloud turbulence:

R. Shaw, Annu. Rev. Fluid Mech 35 (2003)

St ∼ 10
−3

a = 1µm St ∼ 10

St ∼ 10
9
a
2

a = 100µm

Large droplet
Small droplet

(   particle size in meter)a

F = gτ/u0

F ∼ 1







Mixing by random stirring

Department of Physics

Department of Physics

Computer simulation of       particles (red) in two-dimensional 
random flow (periodic boundary conditions in space)        
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a initial distribution, b particle positions after random stirring.



‘Unmixing’ of slightly inertial particles

Non-interacting, non-colliding particles (red) suspended in a random flow

Particle density

Region of high vorticity

St = 0.1

Ku = 1

Particle equation of motion

Maxey centrifuge effect

v̇ =
1

St
(u(r, t) − v)

Maxey, J. Fluid Mech. 174, 441, (1987)

F = 0



‘Unmixing’ of slightly inertial particles

Non-interacting, non-colliding particles (red) suspended in a random flow

Particle density

Region of high vorticity

St = 0.1

Ku = 1

Particle equation of motion

Maxey centrifuge effect

v̇ =
1

St
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Preferential concentratration

Droplets are centrifuged away from 
vortices.

Maxey, J. Fluid Mech. 174, 441, (1987)

Particles avoid regions of high vorticity 
and gather in regions of high strain.

For slightly inertial particles (            )

Particles follows effective velocity 
field    , which is compressiblev

∇ · v = −Ku St Tr

[

(

∂u

∂x

)2
]

v = u − St

[

∂u

∂t
+ Ku(u ·∇)u

]

Clustering because                for typical trajectories.

St ≈ 0

Strain-rate,         Rotational part

= −KuSt[Tr(ST
S) − Tr(RT

R)]

S R

∇ · v < 0



‘Unmixing’ of very inertial particles

Non-interacting, non-colliding particles (red) suspended in a random flow

Particle density

Region of high vorticity

St = 10

Ku = 0.1

Multiplicative amplification

Particle equation of motion

v̇ =
1

St
(u(r, t) − v)

Mehlig & Wilkinson, PRL 92 (2004) 250602

F = 0



‘Unmixing’ of very inertial particles

Non-interacting, non-colliding particles (red) suspended in a random flow

Particle density

Region of high vorticity
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Ku = 0.1

Multiplicative amplification

Particle equation of motion

v̇ =
1

St
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F = 0



Multiplicative amplification

The motion of heavy particles (            ) is independent of the 
instantaneous value of the force if       is small enough (                  ). 

Mehlig & Wilkinson, Phys. Rev. Lett. 92 (2004) 250602
Duncan et al., Phys. Rev. Lett. 95 (2005)
Wilkinson et al., Phys. Fluids 19 (2007) 113303

Langevin/Fokker-Planck treatment possible. 
Dynamics described by single parameter:  

u(rt, t) → u(t)

Replace the position dependent    by ‘random kicks’:u

Ku

St ≫ 1

Clustering results as the net effect of many small deformations of  
particle velocity volumes, uncorrelated from any instantaneous 
structures in the flow.

Ku ≪
√

St

ϵ
2
∼ Ku

2
St



Fractal clustering
Particles cluster on self-similar structures, so called ‘fractals’

Sommerer & Ott, Science 259 , 334, (1993)

Fractal dimension somewhere between one and two



Quantification of clustering (         )

When            and not too large, the dynamics is:
- chaotic (positive maximal Lyapunov exponent)  

- compressible (sum of two maximal Lyapunov exponents negative)

λ1 > 0

Lyapunov exponents              describe rate of contraction or expansion of 
small length element       , and area element        of particle flowδrt δAt

J. Sommerer & E. Ott, Science 259 (1993) 351

λ1 > λ2

λ1 + λ2 < 0

St > 0

Fractal dimension dL ≡ 2 −

λ1 + λ2

λ2

d = 2

Kaplan & Yorke, Springer Lecture 
Notes in Mathematics 730, 204, (1979)

λ1 = lim
t→∞

t
−1 ln(δrt)

λ1 + λ1 = lim
t→∞

t
−1 ln(δAt)
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Deterministic dynamics with gravity
Dynamics in the absence of 

ṙ = v

v = vs + (v0 − vs)e
−γt

vs ≡ g/γParticles reach a terminal ‘settling velocity’

u

Deterministic solution

v̇ = γ(u(r, t) − v) + g

The deterministic solution is important if               (                )

Relative motion between two particles is only affected by gravity 
through the   -dependence in            . Gravity is expected to alter 
correlations between flow and particle trajectories.

vs ≫ u0

r u(r, t)

r = r0 + vst + γ−1(v0 − vs)(1 − e−γt)

FSt ≫ 1
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‘Unmixing’ of falling inertial particles

Non-interacting, non-colliding particles (red) suspended in a random flow
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‘Unmixing’ of falling inertial particles
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Large-    dynamics
Deterministic solution                      with settling velocity

When                                   is large 
the effective correlation time 
approaches white noise.

St

t = t1

t = t2

r ≈ r0 + vst

r = r1

r ≈ r1 + vs(t2 − t1)

vs

vs

Spatial decorrelation becomes 
faster than time decorrelation.

Single-particle correlation function at 
two different times

⟨u(x1, t1)u(x2, t2)⟩

∼ u
2
0e

−|t1−t2|/τ−(x1−x2)
2/(2η2)

∼ u
2
0e

−|t1−t2|/τ−v2

s
(t1−t2)

2/(2η2)

vs = g/γ

G ≡ vsτ/η = Ku StF

0 1 2 3
10−3
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100

t/τ

⟨φ
(x

1
,t

1
)φ

(x
2
,t

2
)⟩

∼ e
−t/τ

Ku = 1 F = 1

St = 10
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Langevin model
Langevin equation for separations                             and relative
velocities                                   (            )

Increments       are Gaussian white noise with                 and
                                                           with          obtained by 
integration of the effective correlation functions

                                                                                      .

δR′
= V

′ δt′ , δV ′
= −V

′ δt′ + δF .

R
′ = (r1 − r2)/η

V
′ = (v1 − v2)/(γη) t′ = γt

δF ⟨δF ⟩ = 0

⟨δFiδFj⟩ = 2δt
′
Ku

2
St ΣklDik,jlR

′

kR
′

l Dik,jl

D21,21 =
3

√
8G

F
[

1
√

2G

]

D12,12 =
G2

− 1

2G4
+

D21,21

3G4

D11,11 = D22,22 = −D11,22 = −D22,11 = −D12,21 = −D21,12 =
1

2G2
−

D21,21

3G2

F [x] ≡
√

πe
x
2

erfc(x)

Dik,jl ≡
1

2

∫

∞

−∞

dt

〈

∂u′

i

∂r′k
(r′(t′), t′)

∂u′

j

∂r′l
(0, 0)

〉

We obtain (               )

                                        ,                                   ,                             .

Gravity introduces anisotropy (                         )D12,12 ̸= D21,21

ĝ = −ey



Langevin model, large-    asymptote
Diagonalise and rescale noise

For a given large value of     define an effective Kubo number          
in    so that the two parameters are equal

                                                                         .

St Kueff

G

A± ≡

(

D21,21

D12,12

)1/4
∂u1

∂r2
±

(

D12,12

D21,21

)1/4
∂u2

∂r1

For large values of                     the dynamics is governed by a single 
parameter                                             .D++ = D

−−
∼ Ku

2
St/G3/2

Compare this parameter to the parameter of the           white-
noise model                   .ϵ

2
∼ Ku

2
St

Kueff ∼

{

Ku St small
Ku1/4/(FSt)3/4 St large

G = KuStF

ϵ
2

         approximately maps the           model with some value of       
onto the           model with Kubo number         .

Kueff F ̸= 0

F = 0

F = 0

Ku

Kueff
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Clustering due to preferential sampling
As we have seen, gravity tends to enhance clustering due to
multiplicative amplification for large values of     .St

What is the effect of gravity on preferential sampling (e.g. Maxey 
centrifuge effect) and anisotropy for general values of    ?F

To answer this question we make a series expansion around 
deterministic trajectories.

                               +   gravity     =     ?



A
x

Example: preferential sampling (         )d = 1

Particle following flow (           )

in a one-dimensional potential 
flow               , with                    .

St = 0

u = ∂xφ ⟨φ(x, t)⟩ = 0

−5 0 5−4

0

4

φ u = ∂xφ A = ∂2

x
φ      ,               ,

Particles tend to move towards 
potential maxima where the strain 
rate                is negative. A ≡ ∂xu

t = 4

x

t

    is non-ergodic: ⟨A(x0, t)⟩ = 0

A(xt, t) ≡ lim
T→∞

1

T

∫ T

0

dt A(xt, t) < 0

A

particle positions

ẋt = u(xt, t)

Ku = 1



Trajectory approximation (        )

Implicit solution

Start from dimensionless equations of motion

Assume              small for all times up to   and expand             around

Insert (i) into (ii) and recursively insert (ii) into itself. Ignore terms above 
a given order in       . This gives an approximation of             in terms of
  ,       ,        etc. evaluated at  the deterministic trajectory     .

(i)

(ii)

Ku

ẍt = (u(xt, t)Ku − ẋt)/St

u(xt, t)

x̃t = x0 + St(1 − e
−t/St)ẋ0with deterministic part                                           .

x̃t

u(xt, t)
x̃t

u(xt, t) = u(x̃t, t) + ∂xu(x̃t, t)(xt − x̃t) +
1

2
∂2

x
u(x̃t, t)(xt − x̃t)

2 + . . .

u ∂xu ∂
2

x
u

|xt − x̃t| t

d = 1

xt = x̃t +
Ku

St

∫ t

0
dt1

∫ t1

0
dt2e

−(t1−t2)/St
u(xt2,t2)
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where    denotes a single particle dynamical quantity, e.g.    ,                , ...

For small enough      or large enough     the expansion is valid for 
many correlation times. This allows neglection of the initial 
configuration     ,     ,        ,            ,.... for large times. Steady state 
time averages along trajectories are calculated as

Ku St

ẋ ∂xu(xt, t)

Steady state averages (        )d = 1

Average over             ,                ,                ,... with known distribution
                      (Gaussian here) along the deterministic trajectories    

u(x̃t, t) ∂xu(x̃t, t) ∂2

x
u(x̃t, t)

x̃t

x0 ẋ0 u(0) ∂xu(0)

X

P (u, ∂xu, . . .)

⟨X⟩∞ = lim
T→∞

⟨X⟩T

⟨X⟩t ≡

∫
dud∂xu · · ·P (u, ∂xu, . . . )X(xt, t)



Calculation of all moments             gives the 
distribution along preferential trajectories x

y

−5 0 5
−0.5

0

0.5

1

Preferential distribution of 

The first two moments of    :

A/
√

3

P (A)/P0(A) − 1

P (A) =

[

1 −

AKu

1 + St
+

(A2
− 3)Ku2(1 + 3St)

2(1 + St)2(1 + 2St)

]

P0(A)

P0(A) =
1

√

6π
e
−A2/6

A

A = ∂xu

Ku = 0.1

St = 0

St = 0.1

St = 1

D.N.S.   
Theory   O(Ku4)

⟨A⟩∞ = −
3Ku

1 + St
+ . . .

⟨A2⟩∞ = 3 +
9Ku2(1 + 3St)

(1 + St)2(1 + 2St)
+ . . .

⟨Am⟩∞



Trajectory approximation (          )

with deterministic part
                                                                                         .

F ̸= 0
Solve equations of motion (dimensionless units)
                                ,
implicitly

rt = r̃t +
Ku

St

∫ t

0
dt1

∫ t1

0
dt2e

−(t1−t2)/St
u(rt2,t2)

ṙ = Kuv v̇ = (u(rt, t) − v)/St + F ĝ

r̃t = r0 + Kuvst + KuSt(v0 − vs)(1 − e
−t/St)

Expand the flow             around     and iterate expansion.u(rt, t) r̃t

Insert the expanded flow into the equation for the velocity gradient
matrix                :                                                       .Z ≡ ∇v

T
Ż = (∇u

T(rt, t) − Z)/St − KuZ
2

Expand this equation around the     -term, solve implicitly and iterate
to obtain an expansion of    .Z

Z
2

Evaluate average compressibility               along particle trajectories to
determine how areas of closeby particles develop (                                    )

⟨∇ · v⟩∞
λ1 + λ2 = Ku⟨∇ · v⟩∞
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We find:
⟨∇·v⟩∞ =

3Ku3

4St5G8

{

2G
2St3(5+4St+3St2−G

2St2(1+St))+(1+St)3(2(1+St)2−G
2St2(St−3))F

[

1 + St√
2StG

]2

−
√

2GSt2(13+17St+15St2+3St3+G
2St2(4−St−3St2)+G

4St4)F
[ 1 + St
√

2StG

]

−4GSt(1+St2(2+St2+G
2))F

[ 1

G

]

−2
√

π(1+St2)G(−2+St2(−2+(−3+St2)G2))

∫

∞

0

dtexp
[

G−2
−t/St−G2t2/4

]

erfc
[

G−1+Gt/2
]}

Ku = 0.1 Ku = 1

∇ · v

St St

∼ St
2

∼ St
−2

|⟨∇ · v⟩∞|

F = 0 F = 0.1 F = 1 F = 10 Theory



As            the Maxey result is recovered

x
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Ku = 0.1

∇ · v

St

∼ St
2

∼ St
−2

|⟨∇ · v⟩∞|

F = 0 F = 0.1 F = 1 F = 10 Theory

Small    :St ⟨∇ · v⟩∞ ∼ 3Ku3St2(4G − 6G3 − (4 − 4G2 + 3G4)F [G−1])/(4G5)

⟨∇ · v⟩∞ ∼ −6Ku
3
St

2
G → 0

2 4 6 8 10
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0

G

∼ ⟨∇ · v⟩∞/(Ku3St2)
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Ku = 0.1 Ku = 1

∇ · v

St St

∼ St
2

∼ St
−2

|⟨∇ · v⟩∞|

F = 0 F = 0.1 F = 1 F = 10 Theory

GSmall    : ⟨∇·v⟩∞ ∼ −6Ku3St2
1 + 3St + St2

(1 + St)3
+9Ku3

G
2St2

1 + 5St + 12St2 + 20St3 + 4St4

(1 + St)5

As            earlier results are recoveredG → 0

Gustavsson, Mehlig EPL 96 (2011)
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Ku = 0.1 Ku = 1

∇ · v

St St

∼ St
2

∼ St
−2

|⟨∇ · v⟩∞|

F = 0 F = 0.1 F = 1 F = 10 Theory

Large     ,     : ⟨∇ · v⟩∞ ∼ −3Ku3St
√

2π/(4G3)St G

Same parameter-dependence as the Langevin model: 

KuSt⟨∇′ · v′⟩∞ ∼ −3
√

2π/4[Ku2St/G3/2]2



Complication: Steady-state averages                     in turn depend 
on                 and contain secular terms.

Find      by averaging                 with                    using steady-state 
averages                    .

with                       gives to lowest order in  

Maximal Lyapunov exponent λ1

Similar expansion for     usingλ1

Ku

depends on the unit vector      for a small initial separation between 
two particles.

λ1 p = 1, 2, . . .

R̂t ≡ Rt/|Rt|

R̂0

λ1 =
Ku2

2G5

[

− G
3 + G(1 + 11G

2)(R̂0 · ĝ)2 − 2G(1 + 5G
2)(R̂0 · ĝ)4

+
1
√

2

{

G
2(1+3G

2)−(1+12G
2+9G

4)(R̂0·ĝ)2+2(1+6G
2+3G

4)(R̂0·ĝ)4
}

F
[

1
√

2G

] ]

⟨(R̂ · ĝ)2p⟩∞

⟨(R̂ · ĝ)2p⟩∞

(R̂0 · ĝ)2p

(R̂0 · ĝ)2p

λ1 = lim
t→∞

1

t
ln

|Rt|

|R0|
= lim

t→∞

Ku

t

∫
t

0

dt
′
R̂

T

t′
Zt′R̂t′
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Theory

Self-consistency solution to remove the secular terms gives
recursion relations for the moments                     .

y

100 102 104 106
0

0.5

1

∼

S
t −

3/
2

St

λ1

p = 2

p = 4Ku = 0.1

These recursions can be solved if series expanded in small                    .G = KuStF

We find

⟨(R̂ · ĝ)2p⟩∞ =
(2p − 1)!!

2pp!

[

1 +
pG2

p + 1
−

p(41 + 19p)G4

4(p + 1)(p + 2)
+ . . .

]

⟨(R̂ · ĝ)2p⟩∞

(R̂0 · ĝ)2p

p = 1

p = 3

Padé-Borel resum this series to find the theory plotted below



Comparison to turbulence
Comparison of random-flow model (         ) to results from DNS.
Correlation dimension     defined by scaling                        of
distribution of distances         for small distances    .

J. Bec, H. Homann, S. Ray  arXiv:1401.1306

Fr = 1/F
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Conclusions

Small     : Gravity reduces clustering because correlations between 
particles and flow structures are weakened.

St

Large     : Gravity may increase clustering significantly due to 
multiplicative amplification.

St

Inertial response to flow fluctuations and the effect of gravity are
not additive.

Gravity introduces an anistropy in the spatial distribution of close-
by particles. Particle separations align with      .±ĝ


