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Water droplets in turbulent rain clouds

Forces on small droplet
Gravity (Newton’s second law):

_ __ 4mpp 3
Fg =mg= —*a"g
Pp density of water droplet
g gravitational acceleration
a particle size

Friction (Stokes’ law):
Fs = p(u(rt)—v)

where
pn = 6rppra (= my) F
1% viscosity A Fg
u(r,t) velocity of turbulent air in cloud
T droplet position F's
v droplet velocity
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Model

Spherical droplets move independently
Particle equation of motion

T="7

v =7(u(rt)—v)+g

8l damping rate (depends on droplet size and mass)
T particle position

A particle velocity

g gravitational acceleration (or a mean flow)

u(r,t) stationary incompressible random velocity field
no preferred direction or position in either space or time
single scale flow with typical length scale 77 , time scale 7 and speed

(u(z1,1)) =0

(u(@y, b)) u(®s, b)) ~ ude I —tl/T=(@i—@2)"/ (207)

Question: How do particles cluster within this model?
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Model parameters

uo flow SiPe.ed eroth of Dimensionless parameters:
7 corre.atlon ength of flow Kubo number Ku = uoT/n
v damping rate
S Stokes number St =1/(v7)
7 correlation time of flow Di ionl ity I —
g gravitational acceleration MENSIONTESS gravity = 97/ o
Large droplet
In rain cloud turbulence: Small droplet a = 100 um
a=1pm St ~ 10
Ku~1 St ~ 1073
F o~
St ~ 10%a?

(a particle size in meter)
R. Shaw, Annu. Rev. Fluid Mech 35 (2003)
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Mixing by random stirring

Computer simulation of 10* particles (red) in two-dimensional
random flow (periodic boundary conditions in space)

05

a initial distribution, b particle positions after random stirring.
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‘Unmixing’ of slightly inertial particles

Non-interacting, non-colliding particles (red) suspended in a random flow

Particle equation of motion
1

v = §(u(r,t) —v)
ot = 0.1
Ku=1

F =

Maxey centrifuge effect Maxey, ). Fluid Mech. 174,441, (1987)
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‘Unmixing’ of slightly inertial particles

Non-interacting, non-colliding particles (red) suspended in a random flow

Particle equation of motion

o — %(u(r,t) _ v)
St = 0.1
Ku=1
F=0

Maxey centrifuge effect Maxey, ). Fluid Mech. 174,441, (1987)
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Preferential concentratration

Maxey, J. Fluid Mech. 174,441, (1987)

Droplets are centrifuged away from '%%7/.2» [ g = Ny 1///
: L s T M
vortices. %ﬁ/fj@/ %/ %/%?4/////%\//77//%//
For slightly inertial particles ( St ~ 0 ) ﬁ?\%/ //f%//\ lx@f //%/ f/ T(
du VAN NS S A
v=u-—St lat + Ku(u - V)u] //?/%@/é/ %ﬂ{%}f/ﬁijﬂ%ﬁﬁ/\ o
- ~ - S, T A A e
Particles follows effective velocity DR M///}/;» ﬁ//
field v, which is compressible ¢§§ \ R %//é//ﬁ%\ﬂmﬂ%ﬂ//
AV W /W{/
ou) 2 AT S S
Vov=-KuStTr | 2o B 240 i = )
v u r ox \wg}iéﬁ/’/‘///ﬂ'\\\ix /?/%[%/% /VM

= ./'% e '.Qio b .ég// P i -
= —KuSt[Tr(8"S) — Tr(R"R)] = = =i o =% ~
: : Particles avoid regions of high vorticity

S Strain-rate, [ Rotational part and gather in regions of high strain.

Clustering because V - v < 0 for typical trajectories.
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‘Unmixing’ of very inertial particles

Non-interacting, non-colliding particles (red) suspended in a random flow

Particle equation of motion
1

v = §(’U;(T,t) o ’U)
St = 10
Ku =20.1

F =

I/.%‘EQ.".

Multiplicative amplification Mehlig & Wilkinson, PRL 92 (2004) 250602
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‘Unmixing’ of very inertial particles

Non-interacting, non-colliding particles (red) suspended in a random flow

Particle equation of motion

o — %(u(r,t)—'v)
St = 10
Ku=0.1

F =

Multiplicative amplification Mehlig & Wilkinson, PRL 92 (2004) 250602
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Multiplicative amplification

The motion of heavy particles (5t > 1) is independent of the
instantaneous value of the force if Ku is small enough (Ku < \/§).

Replace the position dependent u by ‘random kicks’:
u(ry, ) — u(t)

Langevin/Fokker-Planck treatment possible.
Dynamics described by single parameter: ¢ ~ Ku*St

Clustering results as the net effect of many small deformations of

particle velocity volumes, uncorrelated from any instantaneous
structures in the flow.

Mehlig & Wilkinson, Phys. Rev. Lett. 92 (2004) 250602
Duncan et al., Phys. Rev. Lett. 95 (2005)
Wilkinson et al., Phys. Fluids 19 (2007) 113303
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Fractal clustering

Particles cluster on self-similar structures, so called ‘fractals’
Sommerer & Ott, Science 259, 334, (1993)

Fractal dimension somewhere between one and two
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Quantification of clustering (d = 2)

Lyapunov exponents A; > )y describe rate of contraction or expansion of
small length element {7, ,and area element 0.4, of particle flow

A = lim ¢t~ In(dry)

t— 00 )
A+ A= lim ¢ In(0.A4;)
t— 00
J. Sommerer & E. Ott, Science 259 (1993) 351

When S5t > 0 and not too large, the dynamics is:
- chaotic (positive maximal Lyapunov exponent)

A >0

- compressible (sum of two maximal Lyapunov exponents negative)

A+ Ay <0 | <
A1+ A2
Fractal dimension di, = 2 — Kaplan & Yorke, Springer Lecture
Ao Notes in Mathematics 730, 204, (1979
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[ o)
Maxey o o
[ centrifuge o o
[ o)
I o)
1.8F .
- Preferential © 8
- concentration
[ o § Multiplicative
- Ku =1 % amplification
107 100

Clusterlng without gravity

Flow |nten5|ty KU.

A1+ A
A2
Fractal dimension dL

dLEQ—

10!

S 2 N o s U © © B Xo)

102

101 109

Inertia St

Multiplicative amplification
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Deterministic dynamics with gravity

Dynamics in the absence of u
r ="
v =y(Tt]—v)+g

Deterministic solution
—1 —~t
r=rg+vst+v9 (vg—vg)(l —e )

v = v, + (vg — vg)e

Particles reach a terminal ‘settling velocity’ Uy = g/”y

The deterministic solution is important if v, > ug ( F'St > 1)

Relative motion between two particles is only affected by gravity
through the r-dependence in u(7,t) . Gravity is expected to alter
correlations between flow and particle trajectories.
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Fractal dimension df,

Clustering with gravity (Ku = 1)

0 S NI s At
[ o Q) % ]
| A I
: ® %
1.8_— % "
[ 0 <8 R,
o % «— large 'St
: OO@§ 1 (deterministic
1.6k ] solution
- O F important)
Q=1 _
102 100 10" 10
Inertia St
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‘Unmixing’ of falling inertial particles

Non-interacting, non-colliding particles (red) suspended in a random flow

St = 10
Ku=1
F=1

Frame moving with

. Vg
velocity vy

- Particle density

Large-St gravitational clustering
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‘Unmixing’ of falling inertial particles

Non-interacting, non-colliding particles (red) suspended in a random flow

St = 10
Ku=1
F=1

Frame moving with

velocity vy S

. Particle density

Large-St gravitational clustering



Large-St dynamics

Deterministic solution r ~ r( + vt with settling velocity vs = g/~

Spatial decorrelation becomes t =1t =17
faster than time decorrelation. l

Single-particle correlation function at Us
two different times

(u(x,t1)u(xs, t2))

~ u%e—ﬁl—t2|/T—(€B1—€B2)2/(2?72)
~ wle~mtal /Tl =)/ (20 =
3 10-11°
_ . s 1" o
When G = v,7/n = KuSt Fis large = ) N
the effective correlation time = 107 m\ S E
approaches white noise. 8 -, Ost=1 NS
< 10-3% © St = 10 N,
0 1 2 t/T 3
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Langevin model

Langevin equation for separations R’ = (r; — r5)/n and relative
velocities V' = (v; — v3) /() (t' = ~t)

SR =V'§t', V' =—-V'st' +6F.

Increments ) F' are Gaussian white noise with () F') = 0 and
<(5F15FJ> = 25t/KU.ZSt Zleik’le;{Rg WithD/L‘]@jl obtained b)’
integration of the effective correlation functions

1 ouw;, , ,. , o
Dik,jl — 5/ dt <a7“/k (’I" (t) )0T/l (O O)>

We obtain (g = —e,)

D11 11 = Dogos = —D11 95 = —Das 11 = —Dio o1 = — Doy 19 = —— — —2L
11,11 22,22 11,22 22,11 12,21 21,12 = 505 ~ g
G- —1 D21 21 3 1 2
Diy 1y = p 22l oy =2 | Flal = re® erfe(x) .
12,12 Yel Vel 2121 = 7 [z] = /7e” erfe(x)

Gravity introduces anisotropy (D12 12 # D21 .21)
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Langevin model, large- (7 asymptote

Diagonalise and rescale noise

Ay = <D21,21 ) t/4 Ouy 4 <D12,12>1/4 Ous

D212 or? Doy 21 orl

For large values of G = KuStF' the dynamics is governed by a single
parameter D, , = D__ ~ Ku*St/G*/?.
Compare this parameter to the parameter of the /' = 0 white-

. 2
noise model €2 ~ Ku“St.

For a given large value of St define an effective Kubo number Kug
in ¢” so that the two parameters are equal

Ku St small

Rlefr ~ { Kul/*/(FSt)3/* St large

Kues approximately maps the ' # 0 model with some value of Ku
onto the /' = 0 model with Kubo number Ku.g.




Department of Physics ot ot "1 " GOTEBORGS UNIVERSITET

Large-St gravitational clustering

The effective Ku.g maps the dynamics with /' > 0, Ku = 1 and
large St on the F' = 0 -dynamics

Ku dr, dy,
10! g T 2Q
[ @ 5 :
@)
1.8 - “ _
0 © oy o 8 %
10 : 7 centrifuge @ 0
16} | b
! L Preferential / ]
1 [ concentration Multiplicative am/l)liﬁcation
10— 4 L 1l Ll Ll Ll Ll
107 102 107 10° 10! 102 10
O F =0 —— Langevin model

O F=1
S
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Clustering due to preferential sampling

As we have seen, gravity tends to enhance clustering due to
multiplicative amplification for large values of St .

What is the effect of gravity on preferential sampling (e.g. Maxey
centrifuge effect) and anisotropy for general values of F'?

I
~9

+ gravity = !

To answer this question we make a series expansion around
deterministic trajectories.
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Example: preferential sampling (d = 1)

Particle following flow (St = 0)
i't — ’U,(CCt, t)

in 2 one-dimensional potential
flow u = 0,¢ ,with (¢(x,t)) = 0.

Particles tend to move towards
potential maxima where the strain
rate A = 0, u is negative.

A is non-ergodic: (A(xp,t)) =0
T

, , A =02 1
—4 Qb | xgbé A(th,t) = lim —/ th(ﬂZ’t,t) <0

. .0, T— T
® Pal'tICIG pOSItIOﬂS L o0 0
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Trajectory approximation (d = 1)

Start from dimensionless equations of motion
it ( (%t, )K’LL—ZCt)/St

Implicit solution

Lt — xt + —/ dtl/ dt26_(t1 t2)/5t (33752 tz) (I)

—t/St)le

with deterministic part 7; = x + St(1 0.

Assume |z; — T+ small for all times up to ¢ and expand u(x;,t) around 7;

’LL(CCt,t) — U(flvft, t) + (%u(a?t, t)(CCt — ZCt) + 82 (Zlft, )(CIJt — ft)Q + ... (II)

Insert (i) into (ii) and recursively insert (ii) mto itself. Ignore terms above
a given order in Ku .This gives an approximation of u(x¢,t) in terms of
u, Opu, 021 etc. evaluated at the deterministic trajectory ;.
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Trajectory approximation (d = 1)
Expansion is good up to some Ku - and St -dependent time scale ¢".

Ku=0.1 Ku=1

L5
0

—— Numerical trajectory

_— Analitical tralectori OiKu5 i usini uia:o, ti .
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Steady state averages (d = 1)

Average over (%, 1), Opu(Zs,t),07u(y,1),... with known distribution
P(u,dzu, . ..) (Gaussian here) along the deterministic trajectories 7;

(X)) = /dud@xu---P(u,@xu,...)X(:ct,t)

where X denotes a single particle dynamical quantity, e.g. &, 0, u(x¢, 1), ...

For small enough Ku or large enough St the expansion is valid for
many correlation times. This allows neglection of the initial

configuration o, Zo,%(0), 0,u(0),....for large times. Steady state
time averages along trajectories are calculated as

(X)oo = lim (X)7

— 00
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Preferential distribution of A = 0, u
The first two moments of A : P({l)/PO (A) _1 ,,,,,,
1F St = ;
(A, = o8 | St = 0.1
1+ St 5 St =1 1
9 0.5:
(A% — 34 9Ku“(1 + 3St) |
(14 St)%(1 + 2St) N - S E
Calculation of all moments (A"")  gives the 0.5 Ku:() ,1 ,,,,,,,,,,
distribution along preferential trajectories -0 Y / V3’
2 2
P(A) = |1 - AKu N (A S)K;l (1 + 3St) Py(A) ©56DNS.
1 1+ 5t 2(1 4 5t)2(1 + 25t) ——Theory O(Ku")
Py(A) = ——e A°/0
0( ) \/677'(6
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Trajectory approximation (/' # 0)

Solve equations of motion (dimensionless units)
r=Kuv , v = (u(rs,t) —v)/St+ Fg

t1
ry =7+ —/ dtl/ dt2€_(t1 t2)/5¢ (rtz t2)

with deterministic part
ry = 1o + Kuvgt + KuSt(vg — vg)(1 — e—t/St) .

implicitly

Expand the flow w (7, ?) around 7; and iterate expansion.

Insert the expanded flow into the equation for the velocity gradient
matrix Z = Vv': Z = (Vu' (r,, 1) — Z)/St — KuZ? .

Expand this equation around the Z?-term, solve implicitly and iterate
to obtain an expansion of 7.

Evaluate average compressibility (V - v) .. along particle trajectories to
determine how areas of closeby particles develop (A1 + Ao = Ku(V - v).)
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Preferential sampling of V - v

We find: ; 2
K 1
(V-0)oo = 4;51;8{2G2St3<5+48t+38t2_028t2(1+St))+(1+St)3(2(1+St)2—G28t2(St—3))]—" [ \/§+s ts;]
V2GSt (134175t + 1552+ 383+ G2St% (4— St —3St2) + GASt4) F { \1/581?;} 4GSt(14St2(2+St2+-G2)) F [é}

—2¢/7T(14-St%) G(—2+St? (=24 (—3+St*)G?)) /Oo dtexp {G_Q—t/St—Gth/él} erfc {G‘%Gt/z} }
(V-v)oo|
F Ku = 0.1

10"

102 107!

107 ¢ 102 |
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Preferential sampling of V - v

SmallSt: (V- v)o ~ 3Ku’St?(4G — 6G> — (4 — 4G? + 3GHFIG™Y])/(4GP)

As G — 0 the Maxey result is recovered(V - v),, ~ —6Ku’St*

102 F

1073

(V-v)oo|
F Ku = 0.1

H
-
=
I
—
<
&
n
>
=
H
=

Theory
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Preferential sampling of V - v

1 2 2 3 4
342 + 35t + St IR G282 1 + 5St 4+ 125t~ + 20St° + 4St
(1+ St)3 (1+ St)°

SmallG: (V). ~ —6Ku

As (¢ — (0 earlier results are recovered
Gustavsson, Mehlig EPL 96 (201 1)

(V-v)oo|
- Ku = 0.1

10"

102 107!

107 ¢ 102 |
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Preferential sampling of V - v

Large

Same

St, G : (V- 0)e ~ —3Ku>Stv2r/(4G?)

parameter-dependence as the Langevin model:

KuSt(V’ - v') oo ~ —3V/ 27 /4[Ku?St/G>/?]?

(V- v)o
- Ku = 0.1 :
1072 ¢ 10—1;
107% ¢ 1072
. S S SO %
107! 10° St 10! 1072 107! 10° 10! St 107
OF=0 =01 QF=1 AF=10 ==Theory
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Maximal Lyapunov exponent )\

Similar expansion for )\1 using

o R | Ku AT, A
AL = tliglo ln | Ry tlggo ot 0 dt Ry Lo By
with R; = R, /|R;| gives to lowest order in Ku
2
A1 = % [ — G2+ G+ 11GH(Ry - §)? —2G(1 +5G?*)(Ry - §)*

1 2 2\ 2 NRA.5)2 2 H(Ry-g)* L
+E{G (143G%) ~ (14+12G240G") (Ro-9)*+2(146G+3G") (Bo-9) }f {ﬂG”

depends on the unit vector R, for a small initial separation between
two particles.

Find \; by averaging (R - §)°” with p = 1,2, ... using steady-state
averages (R - §)%") .

Complication: Steady-state averages ((R-§)%) in turn depend
on (RO g)°? and contain secular terms.
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Preferential alignment

Self-consistency solution to remove the secular terms gives
recursion relations for the moments (R - §)*") . .

These recursions can be solved if series expanded in small G = KuStF'.

We find , ,
(R-§)%). — )!! [1 N pG p(41 + 19p)G

p+1 4lp+1(p+2)

A1
g ©r -
F'=0.1
9 F=
107 A F =10
——Theory
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Comparison to turbulence

Comparison of random-flow model (d = 2) to results from DNS.
Correlation dimension D, defined by scaling p(R) ~ R~ of
distribution of distances p( ?) for small distances 3.

5 Fr=1/F
%""|""Q""|""|""Q""|": ‘% 1
D2 ( Ku=1: S
1'88 ] 28 !___*__ -‘ ______ -
:O o E " :’z_-_ —
1.6 9 o o ; “2'62‘; “ .- e
[ ] o ‘ - ”,_-_.-- - 'E
1.4 :‘%)O ¢ . 24| i:‘:'i:;’. W §- o —
: i :: ~A-Fr=2
L 4 29/ ~0-Fr=0.3
1.25 O F — O O F — 1 E - “W = Fr-
B E - = Ly -
T I U U SIS B 7k '
0 1 2 3 4 5 0 0 1 2 3 y 4 5 6
St ¥
Random-flow model DNS

|. Bec, H. Homann, S. Ray arXiv:1401.1306
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Conclusions

Inertial response to flow fluctuations and the effect of gravity are
not additive.

Small St : Gravity reduces clustering because correlations between
particles and flow structures are weakened.

Large St : Gravity may increase clustering significantly due to
multiplicative amplification.

Gravity introduces an anistropy in the spatial distribution of close-
by particles. Particle separations align with +g.




